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ABSTRACT

Online feature selection and classification is crucial for time

sensitive decision making. Existing work however either as-

sumes that features are independent or produces a fixed num-

ber of features for classification. Instead, we propose an op-

timal framework to perform joint feature selection and classi-

fication on–the–fly while relaxing the assumption on feature

independence. The effectiveness of the proposed approach is

showed by classifying urban issue reports on the SeeClickFix

civic engagement platform. A significant reduction in the av-

erage number of features used is observed without a drop in

the classification accuracy.

Index Terms— Government 2.0, quickest detection,

Bayesian networks, correlated features, Markov blanket

1. INTRODUCTION

In the heart of supervised machine learning lies feature selec-

tion, the goal of which is to choose a subset of features from

a larger set of potentially redundant features so as to maxi-

mize classification accuracy [1]. In applications (e.g., [2–4]),

where time sensitive and accurate decision making is essen-

tial, feature selection and/or classification need often to be

carried out in a streaming fashion.

In this paper, the problem of on–the–fly feature selec-

tion and classification is considered. Specifically, we pro-

pose a method that utilizes a varying number of features to

perform joint feature selection and classification of data in-

stances as they become available. This is in stark contrast to

popular offline and online feature selection and dimensional-

ity reduction methods [1, 5–9] that identify a subset of dis-

criminative features, common to all instances for classifica-

tion. To this end, we define an optimization problem which

simultaneously minimizes the number of features evaluated

and maximizes classification accuracy, the solution of which
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leads to an approach that sequentially reviews features to clas-

sify a data instance once it determines that including addi-

tional features cannot improve the quality of classification.

Since feature ordering plays a critical role in this sequen-

tial evaluation process, we introduce a novel feature order-

ing method by utilizing the Markov blanket criterion [10].

Specifically, we model dependencies among features using

a Bayesian network, and order features such that each se-

lected feature contains the maximum possible new informa-

tion about the class/target variable with respect to the already

evaluated feature set.

Our motivation stems from the problem of urban issue

reports classification in civic engagement platforms [11, 12].

Such platforms have recently emerged to facilitate the com-

munication between concerned citizens and the government

by providing the former with the means to electronically re-

port non–emergency urban issues (e.g. potholes or noise com-

plaints) [12, 13]. To ensure the continuous engagement and

participation of citizens, urban issue reports need to be timely

addressed by their local governments. Prior work on classi-

fication of urban issue reports in civic engagement platforms

has mostly focused on either binary classification of reports

into categories [14–16] or importance [17, 18], and typically

need large training datasets to achieve good accuracy [17,19].

All such methods assume features to be independent. On the

other hand, existing feature selection methods [5–9] produce

a fixed set of features to be used during classification; we

have shown in our prior work [20] that this approach is sub–

optimal.

2. PROBLEM DESCRIPTION

Consider a set S of data instances, with each data instance

s ∈ S being described using an assignment of values f ,
{f1, f2, . . . , fK} to a set F , {F1, F2, . . . , FK} of features.

Each data instance s is drawn from some probability distri-

bution over the feature space such that for each assignment f

to F , the probability P (F = f) is non zero. Further, each

instance s may belong to one of L possible classes, with a





of feature F1 inside the sub–network BC . More precisely,

M̃1 , M1 ∩ {MC ∪ C}, where M1 ⊆ F is the Markov

blanket of F1. According to Definition 1, feature F1 is condi-

tionally independent of any feature Fi ∈ {MC − M̃1} given

M̃1. In other words, M̃1 subsumes all information that F1 has

about {MC−M̃1}. Hence, F2 should be selected from the set

{MC − M̃1}, such that it contains the highest mutual infor-

mation with C. Similarly, once n − 1 features are evaluated,

the nth feature Fn should be selected from the set {MC −

{M̃1 ∪ M̃2 ∪ · · · ∪ M̃n−1}} such that it contains the highest

mutual information with C. Every time a new feature is se-

lected, the a posteriori probability vector needs to be updated

using the probability vector ∆T
n+1(Fn|F1, . . . , Fn−1, C) (see

Lemma 1). This marginal distribution can be computed using

exact inference algorithms (e.g. belief propagation) [10, 22].

Lemma 2. Based on the fact that yR =
∑K

n=0
yn1{R=n}

for any sequence of random variables {yn}, where 1A is the

indicator function for event A (i.e., 1A = 1 when A occurs,

and 1A = 0 otherwise), the probability P (DR = j, Ci) can

be written as P (DR = j, Ci) = E
{
πi
R1{DR=j}

}
.

Using Lemma 2, the average cost in Eq. (1) can be written
compactly as:

J(R,DR) = E

{

R
∑

n=1

en +

L
∑

j=1

(

L
∑

i=1

Qijπ
i
R

)

1{DR=j}

}

. (4)

Note that we can rewrite the average cost in Eq. (4) using the

a posteriori probability vector πn as follows:

J(R,DR) = E





R∑

n=1

en +

L∑

j=1

QT
j πR1{DR=j}



 , (5)

where Qj , [Q1,j , Q2,j , . . . , QL,j ]
T .

To obtain R, we must first obtain the optimal decision rule

DR for any given R. In the process of finding the optimal

decision, we need to find a lower bound (independent of DR)

for the second term inside the expectation in Eq. (5), which

is the part of the equation that depends on DR. Theorem 3

provides such a bound.

Theorem 3. For any classification rule DR given R,∑L

j=1
QT

j πR1{DR=j} > g(πR), where g(πR) ,

min16j6L

[
QT

j πR

]
. The optimal rule is defined as follows:

D
optimal
R = argmin16j6L

[
QT

j πR

]
. (6)

From Theorem 3, we conclude that:

J(R,DR) > J(R,D
optimal
R ), where

J(R,D
optimal
R ) = min

DR

J(R,DR). (7)

Thus, we can reduce the cost function in Eq. (5) to one which

depends only on R as follows:

J̃(R) = E

{
R∑

n=1

en + g(πR)

}
. (8)

To optimize the cost function in Eq. (8) with respect to R, we

need to solve the following optimization problem:

min
R>0

J̃(R) = min
R>0

E

{
R∑

n=1

en + g(πR)

}
. (9)

Since R ∈ {0, 1, . . . ,K}, the optimum strategy will consist

of a maximum of K + 1 stages, where the optimum scheme

must minimize the corresponding average cost going from

stages 0 to K. The solution can be obtained using dynamic

programming [23].

Theorem 4. For n = K − 1, . . . , 0, the function J̄n(πn) is

related to J̄n+1(πn+1) through the equation:

J̄n(πn) =min

[
g(πn), en+1 +

∑

Fn+1

∆T
n+1

(
Fn+1|F1, . . . , Fn,

C
)
πn×J̄n+1

(
diag

(
∆n+1(Fn+1|F1, . . . , Fn, C)

)
πn

∆T
n+1(Fn+1|F1, . . . , Fn, C)πn

)]
,

(10)

where J̄K(πK) = g(πK).

The optimal strategy derived from Eq. (10) has a very in-

tuitive structure: it stops at stage n, where the cost of stop-

ping (the first expression in the minimization) is no greater

than the expected cost of continuing given all information ac-

cumulated up to the current stage n (the second expression in

the minimization). Specifically, at each stage n, our method

faces two options given πn: (i) stop evaluating features and

optimally selecting between the L classes, or (ii) continue

with evaluating the next feature. We use value iteration to

obtain the optimal stopping solution in Eq. (10), where we

uniformly quantize the a posteriori probability space and it-

eratively update the functions J̄n(πn), n = 1, . . . ,K, until

convergence [24].

4. EXPERIMENTAL RESULTS

We illustrate the performance of our approach on a real–world

dataset of 2, 195 issues, spanning a time period between Jan

5, 2010 and Feb 10, 2018, for the capital of the state of New

York, collected from SeeClickFix1. Without loss of gener-

ality, we consider a set of four issue types (4 classes), i.e.,

{Parking Enforcement, Code Violation, Traffic Signal Repair,

Signs (missing, needed, or damaged)}. The goal is to assign

1https://seeclickfix.com/albany-county



Table 1. Performance comparison with baselines.

Method Acc.

Precision

(Avg±Std)

Recall

(Avg±Std)

Avg. #

feat.

O
u

r
A

p
p

ro
ac

h c = 0.4 0.412 0.312± 0.393 0.476± 0.478 1.0

c = 0.3 0.824 0.807± 0.142 0.844± 0.145 2.072

c = 0.2 0.939 0.935± 0.083 0.939± 0.055 2.293

c = 0.1 0.943 0.945± 0.070 0.942± 0.055 2.471

c = 0.0 0.945 0.957± 0.053 0.940± 0.048 3.793

OFS-Density [7] 0.951 0.938± 0.072 0.951± 0.045 15.0

SAOLA [8] 0.741 0.765± 0.289 0.811± 0.307 5.20

OSFS [9] 0.735 0.708± 0.359 0.807± 0.321 3.80

FAST–OSFS [9] 0.701 0.611± 0.473 0.719± 0.482 4.0

ASSESS [20] 0.949 0.941± 0.068 0.949± 0.056 4.867

SVM–FS [19] 0.947 0.950± 0.074 0.947± 0.043 6

PCA 0.966 0.962± 0.038 0.968± 0.036 190

SVM–L 0.970 0.961± 0.038 0.966± 0.035 1606

SVM–G 0.968 0.964± 0.036 0.969± 0.034 1606

RF (d=5) 0.947 0.941± 0.048 0.950± 0.056 1606

RF (d=10) 0.962 0.961± 0.037 0.961± 0.033 1606

XG–B 0.964 0.957± 0.048 0.962± 0.040 1606

each issue to one of the four classes, using a total of 1, 606
features, extracted from issues’ title and description by tok-

enizing sentences into unigrams. A feature value corresponds

to the number of appearances of a specific word in an issue.

To obtain the highly correlated feature set with the class

variable, we filter out features based on a threshold α on the

mutual information between each feature and the class vari-

able. For ease of implementation, we consider a tree depen-

dency structure, where the class variable is the root of the

tree and each feature node contains the class variable and

at most one other feature node as its parents. This type of

model can be efficiently trained by computing pairwise con-

ditional mutual information among features and building the

maximum spanning tree [25]. We use a smoothed maximum

likelihood estimator to estimate the conditional probability ta-

bles, (i.e., P (Fn|ΠFn
), where ΠFn

denotes the set of par-

ents of Fn), after binning the feature space. For example,

P̂ (Fa = fa|Fb = fb, C = Ci) =
Na,b,i+1

Nb,i+V
, where Na,b,i

denotes the number of samples that satisfy Fa = fa and

Fb = fb, and belong to class Ci, (Nb,i is defined in a simi-

lar way) and V is the number of bins considered. We estimate

the a priori probabilities as P (Ci) =
Ni∑
L
i=1

Ni
, i = 1, . . . , L.

In our experiments, threshold α is set to 0.1, number of bins

V = 10, L = 4 (i.e., 4 issue types), misclassification costs

are set to Qij = 1, ∀i 6= j and Qij = 0, ∀i = j, and feature

costs cn ∈ {0, 0.1, 0.2, 0.3, 0.4} are considered.

We compare the performance of our approach to (i) on-

line feature selection methods OFS-Density [7], SAOLA [8],

OSFS [9], FAST–OSFS [9], (ii) our own prior work, AS-

SESS [20], (iii) offline feature selection and dimentionality

reduction methods: SVM–FS [19], Principal Component

Analysis with SVM classifier (PCA), and (v) state–of–the–art

classifiers: Support Vector Machines with linear (SVM–L)

and Gaussian (SVM–G) kernels, inherently multiclass classi-

fiers, namely Random Forest (RF) with maximum tree depths

d = 5, 10, and XG Boosting (XG–B). For online feature se-

lection methods, we use KNN classifier to evaluate a selected

feature subset. Five–fold cross validation results are reported.

In Table 1, we summarize the performance of our ap-

proach compared to all baselines. Among all baselines,

SVM–L achieves the highest accuracy, SVM–G achieves the

highest precision and recall, but requires ∼650 times more

features than our approach for a mere 2.8%, 2.0% and 2.9%

improvement in accuracy, precision and recall, respectively.

OFS–Density [7] outperforms all other online feature se-

lection algorithms. However, OFS–Density [7] requires ∼6

times as many features, while degrading 0.7% in precision,

for a mere 0.8% and 1.0% improvement in accuracy and re-

call, respectively, compared to our approach. By relaxing the

feature independence assumption in ASSESS [20], our ap-

proach reduces the number of features used by ∼50%, while

incurring 0.6% and 0.7% degradation in accuracy and recall,

respectively.

5. CONCLUSION

In this paper, we have addressed the problem of selecting the

least number of most informative features per data instance

for fast and accurate classification. An optimization prob-

lem was defined in terms of the cost of evaluating features

and the Bayes risk associated with the classification rule, and

its optimal solution was obtained. A novel feature ordering

technique was introduced to accommodate early stopping of

the classification task by taking feature dependencies into ac-

count. Evaluation on a real–world dataset demonstrated the

ability of the proposed approach to reduce the number of fea-

tures used by up to ∼50%, while maintaining classification

performance as compared to the state–of–the–art. In our fu-

ture work, we plan to simultaneously learn the feature depen-

dency structure and find the optimal feature ordering on–the–

fly.
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